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Abstract. Algorithm parallelization plays and important role in mod-
ern multi-core architectures. The present paper presents the implemen-
tation and optimization of the algorithm to find prime numbers called
Sieve of Eratosthenes. The performance, efficiency and scalability anal-
ysis was made in distinct improvements over a serial and two parallel
versions. The parallelization of the algorithm was made employing two
distinct technologies OpenMP and MPI. The obtained results shown that
the parallel versions outperform the serial version in most cases with a
factor higher than 100.
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1 Introduction

Prime calculation plays nowadays an important role on secure encryption. The
data encryption/decryption by public keys such as the RSA algorithm [3] make
use of prime numbers. Basically the “public key” consists in the product of two
large primes used to encrypt a message, and the “secret key” consists on the
primes itself used to decrypt the message. Once that the two multiplied prime
number only have four factors: one, itself and the two primes, the time spent
to discover those primes and find the “secret key” it is proportional to the time
needed to find the two primes. This means that the security of RSA is based on
the very hard and deterministic process of factoring large numbers. Using bigger
prime numbers increase the security of the “public key” but also increase the
computational cost needed to generate those prime numbers. That is one of the
main reasons why finding prime numbers is so important in the computer world
and shows how important is nowadays to find bigger prime numbers efficiently.

Finding prime numbers was initially described by the Greek mathematician
Eratosthenes more than two thousand years ago [6]. In their algorithm called the
Sieve of Eratosthenes [7] it was described a procedure to find all prime numbers
in a given range. The algorithm is based in a check table of integers used to
sift multiples of known prime numbers. This eliminates the need of redundant
checks on numbers that cannot be prime.

In the present paper it will be evaluated implementations of the Sieve of
Eratosthenes using both serial and parallel versions. The parallelization of the
algorithm will be implemented using two distinct technologies OpenMP [5] and
MPT [4].



Pseudocode 2.1 Sieve of Eratosthenes algorithm

1. create a list of unmarked natural numbers 2,3,...,N:
primes[1] := false
for i :=2 to N do
primes[i] := true
end
2. initialize the seed:
k:=2
3. perform the sieve until k% < N:
while (k* < N) do
i:=k>
(a) mark all multiples of k between k? and N:
while (i < N) do

primes[i] :== false
i:=1+k
end
(b) find the smallest unmarked number greater than k:
while (primes[k] == true) do
k=Fk+1
end

end
4. unmarked numbers are primes

2 Sequential Sieve of Eratosthenes

The pseudo-algorithm used to calculate the k& prime numbers below N is shown
in Pseudocode 2.1.

An example of the sieve to find the all prime numbers bellow 50 is shown in
Figure 1. In Step 1 it is defined the list of all natural numbers from 2 to 50. The
elimination of all multiples of 2, 3, 5 and 7 is made in steps 2 to 5. Once that
the square of the next unmarked number in the table (11 x 11) is grater than 50
all unmarked numbers are primes.

The complexity of the sequential Sieve of Erathosthenes algorithm is O(n lnlnn)
and n is exponential in the number of digits.

All algorithms were implemented in C++, the program was developed and
tested on Linux. For user simplicity, command line arguments are available to
control the number of primes to within a specified bound and the number of
threads or processes to be used in the calculation.

2.1 Single processor implementation
The single processor implementation is a serial version that executes the sieve

using only one thread or process. In the present work there were evaluated three
distinct versions:



Step 1: Numbers from 2 ...50 Step 2: Eliminated multiples of 2

2345678910 B34 5]6 /78 910 Primes:
11(12/13/14 /15(16|17|18 |19 |20 11(12|13 /14 /15|16 |17|18 19|20/ 2
21|22|23 24|25|26| 2728|2930 21|22 23 (24|25 26| 27 28(29|30
31|32/33/34(35 /36|37 38(39|40 31/32(33/34|35/36|37/38/39 (40
414243 44|45 46 | 47(48|49|50 4142 |43 44|45 46 | 47|48 |49 50

Step 3: Eliminated multiples of 3 Step 4: Eliminated multiples of 5

2 4,56 /|7|8|9|10| Primes: 2|3 4 6| 7/8 9|10 Primes:
11(12/13 /14 15(16|17|18 19 |20| 2: 3 11/12|13|14/15|16|17|18 19|20| 2 3, 5
21|22 2324|2526 27 28|29 |30 21|22 23(24|25 26 27 28|29 30
31|32/33/34/35|36 37 38/39|40 31|3233/34/35 36 37 38(39 40
414243 |44|45 46 4748|4950 41(42) 43|44 45|46 47|48 49|50

Step 5: Eliminated multiples of 7 Step 6: Remaining are prime.

23 4568910 Primes: [2]3/4/5]6 7 8 9 10/ Primes:
11(12/13 /14 15/16|17|18 19(20| 2 3> 5 7|11 (12|13 14 15|16 17 18 19|20 %13’1;’7 17;
21|22 23|24 25|26 |27 28|29 30 21 222324 2526 27|28 29 30 19, o3 29,
31|32/33 34|35 36 37 38/39|40 31|32/33/34/35 36 37 38/39 40| 31, 37, 41,

43, 47
4142 43 |44|45 46 47|48 49|50 4142 43 44|45 46 47|48 4950

Fig. 1: Steps for the calculation of prime numbers using the Sieve of Eratosthenes
algorithm

2.1.1 Base algorithm This version of the algorithm was implemented by
dividing each element of the array by k checking if the remainder of the division
is zero (Code 1.8 line 78). In case of the rest of the division being zero it means
that j is not a prime number and it should be marked (Code 1.8 line 81). The
Pseudocode 2.2 shows the basis algorithm to perform this operation.

Pseudocode 2.2 Checking prime numbers by division
for j := k? to N step 1 do
if jmodk = 0 then
it is not a prime
markj

fi
end

In Code 1.8 line 84 it is found the smallest unmarked number greater than
k. The algorithm is repeated until k? < N (Code 1.8 line 87).



2.1.2 Optimization 1 This algorithm improvement, also known as fast mark-
ing, find j the first multiple of k on the block: j, j+k, j + 2k, j + 3k, etc instead
of performing the checking of the remaining of the division of j by k. With this
change only the multiples of k are computed (2k, 3k, 4k, etc.) and marked as
not being primes, this will avoid the checking if the multiples of j + k are primes,
because they are not. The Pseudocode 2.3 shows the fast marking algorithm.

Pseudocode 2.3 Fast marking
for j :=k? to N step K do

it is not a prime

mark;j
end

The improvement of this algorithm is to change the test done in Code 1.8
line 78 by an fast marking loop defined in Code 1.9 line 81.

2.1.3 Optimization 2 Based on the previous algorithm, another possible
improvement is an reorganization in order how loops are performed. The objec-
tive here is to allow the searching of several seeds in the same data block. The
range of numbers from 2 to IV was divided in equal intervals and subsequently
processed in serial manner block by block. The use of smaller blocks will allow
the processor optimize the memory access of the list of prime numbers and re-
duce cache misses. In Code 1.10 57 is defined the outer loop that performs the
searching of prime numbers whiting a single block.

3 Parallel Sieve of Eratosthenes

The parallelization of the sieve of Eratosthenes is made by applying a domain
decomposition, breaking the array into n—1 elements and associating a primitive
task with each of these elements. Each one of those primitive tasks will mark
as composite the elements in the array multiples of a particular prime (mark all
multiples of k between k% and N). Two distinct data decompositions could be
applied [8]:

3.1 Interleaved Data Decomposition

Performing an interleaved decomposition of the array elements, the process 0
will be responsible for checking natural numbers 2, 2 4+ p, 2 + 2p, etc, processor
1 will check natural numbers 3, 3 + p, 3 4+ 2p, etc. The main advantage of the
interleaved approach lies in the easiness of finding witch process controls a given
index (easily computed by imodp where 7 is the index number and p the process



Pseudocode 3.1 Block Data Decomposition

r:=n mod p
if » =0 then
all blocks have same size
else
First r blocks have size n/p
Remaining p — r blocks have size n/p
fi

number). The main disadvantage of this method is that such decomposition lead
to a significant load imbalances among processes. It also requires some sort of
reduction or broadcast operations.

3.2 Block Data Decomposition Method

This method divides the array into p contiguous blocks of roughly equal size.
Let N is the number of array elements, and n is a multiple of the number of
processes p, the division is straightforward. This can be a problem if n is not a
multiple of p. Suppose n = 17, and p = 7, therefore it will give 2.43. If we give
every process 2 elements, then we need 3 elements left. If we give every process 3
elements, then the array is not that large. We cannot simply give every process
p—1 processes [n/p] combinations and give the last process the left over because
there may not be any elements left. If we allocate no elements to a process, it
can complicate the logic of programs in which processes exchange values. Also
it can lead to a less efficient utilization of the communication network.

This approach solves the block allocation but it is also needed to be retrieved
witch range of elements are controlled by a particular process and also witch
process controls a particular element.

3.2.1 Method #1 Suppose n is the number of elements and p is the number
of processes. The first element controlled by process 4 is given by:

iln/p| + min(i,r) (1)

The last element controlled by process i is the element before the first element
controlled by process i + 1:

i+ 1)|n/p| + min(i+1,7) -1 (2)
The process controlling a particular array element j is:

min(|j/(In/p) + 1)), 1(G =r)/[n/p]]) 3)

Figure 2 shown the block data decomposition using method #1 of an array
of 17 elements in configurations of 7, 5 and 3 processes.



17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Fig.2: 17 elements divided among n processes using the data decomposition
method 1

3.2.2 Method #2 The second scheme does not focus on all of larger blocks
among the smaller-numbered processes. Suppose n is the number of elements
and p is the number of processes. The first element controlled by process 7 is:

lin/p] (4)

The last element controlled by process i is the element before the first element
before the first element controlled by process i + 1:

L+ 1)n/p] -1 (5)

The process controlling a particular array element j is:

lp(G+1) =1)/n] (6)

17 elements divided among 7 processes

17 elements divided among 5 processes

17 elements divided among 3 processes

Fig.3: 17 elements divided among n processes using the data decomposition
method 2

Figure 3 shown the same block data decomposition described in Figure 2 but
now using method #2.



3.2.3 Macros Comparing block decompositions, we choose the second scheme
because it has fewer operations in low and high indexes. The first scheme the
larger blocks are held by the lowest numbered tasks; in the second scheme the
larger blocks are distributed among the tasks.

C/C++ macros can be used in any of our parallel programs where a group of
data items is distributed among a set of processors using block decomposition.
Code 1.7 include the definition of those macros.

3.3 OpenMP implementation

With the objective of increase the performance of the algorithm taking the ad-
vantage of being executed in processor architectures with multiple CPU-cores
sharing the same global memory, it will be presented the following OpenMP
versions of the algorithm:

3.3.1 Base algorithm This version is based on the optimized version de-
scribed in 2.1.3 and adapted in order to run in parallel threads. In Code 1.11
line 69 there were created num_threads threads using an omp parallel for
section. Each one of the separated threads runs in parallel (Code 1.11 line 70).
Each one of the data blocks used have the lower value and block size defined us-
ing the BLOCK_LOW() (Code 1.11 line 72) and BLOCK_SIZE() (Code 1.11 line 73)
macros. Once that only thread 0 is calculating the smallest unmarked number
greater than k it was needed to include two omp barrier (Code 1.11 line 107
and line 114) to synchronize the k on all the running threads.

Finally the total number of primes found by each of the threads should be
calculated. To perform this it was defined an omp atomic section (Code 1.11
line 128) to sum all the partial prime number counts.

3.3.2 Optimization 1 Taking advantage on the fact that there is only a
single even prime number (number 2), the previous algorithm was modified in
order to eliminate all even numbers from the list and performed computation.
This will allows not only to speed-up the process of finding prime numbers but
will also require the half amount of space to store the list of prime numbers.

The main changes over the previous algorithm are related with index adap-
tion in order to deal only with odd numbers. The lower value, high value and
block size were adapted to deal only with odd numbers in the array (Code 1.12
lines 81 to 106). The fist index maintained by each thread need also to be adapted
(Code 1.12 lines 126 to 148). Finally the finding of the smallest unmarked num-
ber greater than k, calculated only by thread 0, should skip also all even numbers
(Code 1.12 line 156).

3.3.3 Optimization 2 A drawback of the two pervious implementations is
the need od perform thread synchronization when updating the value of k. In
this optimization were removed the two OpenMP barrier directives from the



code (Code 1.11 line 107 and line 114). These are synchronization directives
that force all threads to reach a common point before any thread can continue.
Since they were used to synchronize the value of k, the program is changed such
that every thread keeps track of k on its own. This is achieve by pre-calculating
every prime from 3 — v N (remember that even numbers are disregarded). Each
thread is then given a copy of this list of primes — k is changed by iterating
through the list. This optimization allows each thread to move at its own pace,
further reducing execution time.

To implement this in Code 1.13 lines 68 to 90 to each thread is given every
prime from 3—+/N. The task of finding of the smallest unmarked number greater
than k, calculated only by thread 0, should skip also all even numbers (Code
1.12 line 156) was removed. Finally, in Code 1.12 line 180, each thread keeps
track of k on its own.

3.4 MPI implementation

The MPI versions of the three algorithms presented are adapted version of the
ones presented in section 3.3. The main objective is the use of a multiple shared-
memory-systems (MPI) without OpenMP. The three MPI versions presented
also consider the optimizations described in sections 3.3.2 — elimination of all
even numbers from the lists/computation — 3.3.3 — each thread to move at its
own pace by calculating the k values.

In terms of parallelization the keys aspects and challenges of the implemen-
tations using MPI are the switching between a multi-threaded environment to a
message passing interface running on several distributed processes.

3.4.1 Base algorithm This version is based on the optimized version de-
scribed in 3.3.1 and adapted in order to run in a multiple process / multiple
node environment using the MPI instead of OpenMP.

The process identification and number of processes to be used by the BLOCK_LOW ()
(Code 1.14 line 44) and BLOCK_SIZE() (Code 1.14 line 45) macros are retrieved
using the MPI_Comm _rank() and MPI_Comm_size() in Code 1.14 line 44 and 44
respectively.

Each time the process with id 0 finds and updated the smallest unmarked
number greater than k, it it required to broadcast that value to the other pro-
cesses. The Code 1.14 line 111 show the MPI Bcast () instruction used to perform
that task.

Finally to calculate the sum of all prime numbers found by each of the
processes it is necessary to perform a reduction operation that will sum the
partial prime number counts of each process. This reduction is made by the
MPI Reduce() included in Code 1.14 line 126.

3.4.2 Optimization 1 The changes needed to adapt the algorithm to perform
the elimination of all even numbers from the lists/computation is equal of the
one described in section 3.3.2. The main differences are the changing of the



two omp barrier (Code 1.11 line 107 and line 114) to synchronize the k by an
MPI Bcast () instruction Code 1.15 line 152 and the omp atomic section (Code
1.11 line 128) to sum all the partial prime number counts by an MPI_Reduce ()
in Code 1.15 line 167.

3.4.3 Optimization 2 Once that each process in this optimization keeps the
track of k on its own, the pre-calculating of every prime from 3—+/N (remember
that even numbers are disregarded) should be done by each process. This will
avoid the need of the MPI Bcast() included in the Code 1.15 line 152. The
adaption of the algorithm according the rules defined in sections 3.3.2, 3.3.3
adapted to MPI will remove the dependency between processes when finding
prime numbers. To sum all the partial prime number counts found by each
process it is still necessary to include an MPI_Reduce () in Code 1.16 line 189.

4 Results

4.1 Computing platform configurations

To perform the evaluation of the nine algorithms defined in sections 2.1, 3.3
and 3.4 were used three distinct configurations using machines with an Intel(R)
Core(TM)2 Quad CPU Q9300 running at 2.50GHz. The Table 1 shows the de-
tailed information about processor cache.

Cache Size
L1 L2 L3
[Processor[QQ?)OO 4 x 32 KB|2 x 3 MB| -

Table 1: Processor cache size information [2]

Regarding the network interface the hardware configured allowed to use gi-
gabit ethernet.

4.1.1 Single computing node using only one core The sequential Sieve of
Eratosthenes algorithms described in sections 2.1.1, 2.1.2 and 2.1.3 only required
one thread to be executed.

4.1.2 Single computing node using up to 4 cores The OpenMP paral-
lel Sieve of Eratosthenes algorithms described in sections 3.3.1, 3.3.2 and 3.3.3
were tested in four distinct configurations using 1 to 4 threads. The objective
was to test the scalability od those algorithms in a multi-core platform. This
configuration allowed to distribute up to 1 thread per processor core in order to
distribute the load among all processor cores.
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4.1.3 Up to 16 cores in 4 distributed computing nodes The MPI par-
allel Sieve of Eratosthenes algorithms described in sections 3.4.1, 3.4.2 and 3.4.3
were tested distinct configurations using 1 to 16 threads. The objective was to
test the scalability od those algorithms in a multi-core multi-node configuration.
This configuration allowed to distribute up to 1 thread per processor core and
also distribute the load among the 4 available computing nodes. The Code 1.1
show the hostfile configuration for the cluster of 4 nodes.

192.168.33.151 slots=4
192.168.33.150 slots=4
192.168.33.144 slots=4
192.168.33.142 slots=4

Code 1.1: MPI hostfile configuration file

4.2 Test scenarios

4.2.1 Testing the Single processor implementation With the objective
of testing the performance and scalability of the sequential Sieve of Eratosthenes
algorithm the three implementations were executed using distinct ranges of num-
bers. The maximum interval was defined as being 2 to 22°. The algorithms were
tested against 16 ranges with the maximum value being 1/n 2% with n from 1
to 16. To perform this operation it was created a shell script to execute a batch
operation for the 16 intervals (Code 1.2). The time and number or primes found
was retrieved to an results file using the command line listed in Code 1.3. The
output file generated by the script is shown in Code 1.4.

for i in {1..16}

do
arg=‘expr $i \x 2097152°
./bin/sieve $arg

done

Code 1.2: Batch run for the sequential Sieve of Eratosthenes algorithm

./run.sh > output.txt

Code 1.3: Retrieve results for the batch

155612 primes found between 2 and 2097152
Time: 1.963 seconds
295948 primes found between 2 and 4194304
Time: 5.303 seconds
431503 primes found between 2 and 6291456
Time: 9.470 seconds

[..]
2063690 primes found between 2 and 33554432
Time: 104.669 seconds

Code 1.4: Example of the output with information on the interval, primes found
and time spent by the algorithm in seconds

This procedure was repeated for each one of the three sequential algorithms
Base algorithm, Optimization 1 and Optimization 2 using the computing plat-
form configuration defined in section 4.1.1.
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4.2.2 Testing the OpenMP implementation The scalability and perfor-
mance of the OpenMP implementations was done using the computing platform
configuration defined in section 4.1.2. The three distinct OpenMP implementa-
tions Base algorithm, Optimization 1 and Optimization 2, were tested in config-
uration of processes varying from 1 to 4. The Code 1.5 shows the shell script used
to retrieve the results using 1 thread. The second argument of the program is the
number of threads (1 in the given example). The measures (time and number or
primes found) was retrieved using the same method defined in section 4.2.1.

for i in {1..16}

do
arg=‘expr $i \x 2097152°
./bin/sieve $arg 1

done

Code 1.5: Batch run for the OpenMP Sieve of Eratosthenes algorithm with one
thread

4.2.3 Testing the MPI implementation The scalability and performance
of the MPI implementations was done using the computing platform configu-
ration defined in section 4.1.3. The three distinct MPI implementations Base
algorithm, Optimization 1 and Optimization 2, were tested in configuration of
processes varying from 1 to 16 using 4 computing nodes. The Code 1.6 shows
the shell script used to retrieve the results using 8 processes (argument -np 8).
The measures (time and number or primes found) was retrieved using the same
method defined in section 4.2.1.

for i in {1..16}
do

arg=‘expr $i \x 2097152°

mpirun.openmpi —mca btl “openib —np 8 ./bin/sieve $arg
done

Code 1.6: Batch run for the MPI Sieve of Eratosthenes algorithm with 8 processes

4.3 Algorithm Evaluation

To evaluate the performance of the algorithms it was decided to use a measure
based on the number of primes found per second for each algorithm implementa-
tion and configuration used. Once that the number of primes in the same interval,
should be equal for all the algorithms, algorithm that found more primes per
second have more performance.

4.3.1 Single processor results The obtained execution times and average
prime numbers found per second are listed in the Table 2. Each row of the
table contains the run for the respective interval from 2 to 1/n22°. The values
obtained for each one of the sequential algorithms are shown in table columns
Base algorithm, Optimization 1 and Optimization 2.
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) Base algorithm  Optimization 1 Optimization 2
: 9
Found Primes N 2 time primes/sec time primes/sec time primes/sec

155612 2097152 1/16 1,963 79273 0,017 9153588 0,017 9153588
295948 4194304 2/16 5,303 55808 0,073 4054068 0,057 5192053
431503 6291456 3/16 9,470 45565 0,145 2975876 0,084 5136929
564164 8388608 4/16 14,337 39350 0,202 2792886 0,103 5477311
694717 10485760 5/16 19,640 35373 0,264 2631500 0,129 5385395
823750 12582912 6/16 25,605 32171 0,325 2534612 0,158 5213601
951352 14680064 7/16 31,954 29773 0,384 2477477 0,198 4804803
1077872 16777216 8/16 38,763 27807 0,497 2168755 0,244 4417504
1203570 18874368 9/16 45,900 26222 0,523 2301279 0,277 4345014
1328231 20971520 10/16 53,269 24934 0,583 2278268 0,308 4312435
1452314 23068672 11/16 61,222 23722 0,680 2135756 0,330 4400952
1575662 25165824 12/16 69,436 22692 0,757 2081454 0,380 4146476
1698417 27262976 13/16 77,592 21889 0,776 2188680 0,450 3774258
1820646 29360128 14/16 86,222 21116 0,880 2068915 0,428 4253843
1942385 31457280 15/16 95,300 20382 0,972 1998337 0,451 4306838
2063690 33554432 1 104,669 19716 1,018 2027199 0,480 4299352

Table 2: Execution times and average prime numbers found per second for the
Single processor implementation. Each row shows the measured values for 16
equal ranges of numbers from 2 to 22°

The plot of Figure 4 show the compared performance obtained by each one
of the algorithms, in number of primes found per second, when increasing the
range interval of numbers.

4.3.2 OpenMP results In Table 3 are shown the obtained results for the
OpenMP implementations. Each row represents the values obtained in the re-
spective number of cores configuration (1 to 4). The values obtained for each one
of the MPI algorithms are shown in table columns Base algorithm, Optimization
1 and Optimization 2. The values obtained are relative to the range of numbers
between 2 and 22°.

Base algorithm Optimization 1 Optimization 2

Found Primes N 2% Cores fime primes/sec time primes/sec time primes/sec
2063690 33554432 1 1,004 2055467 0,460 4486280 0,492 4194490
2063690 33554432 2 0,854 2416498 0,343 6016586 0,340 6069674
2063690 33554432 3 1,099 1877788 0,443 4658440 0,372 5547551
2063690 33554432 4 4,035 511447 3,730 553268 0,379 5445090

=

Table 3: Execution times and average prime numbers found per second for the
OpenMP implementation. Each row shows the measured values distinct core
configurations in a single computer node configuration
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Single processorimplementation

10000000
9000000
8000000
2000000
s000000
5000000

4000000

Number of primes found persecond

3000000

2000000

1000000

o
146 2/ 3/18 416 S5/ 816 7/18 816 9/16 10/16 1116 12/15 13/16 1a/16 15/16 1

X2

——1.1Base algorithm (Division) ~ ==——1.2 Optimization 1 (Fast marking) 1.3 Optimization 2 (Blocked)

Fig. 4: Evolution of the performance of the Single processor implementations by
changing the range of numbers (16 intervals from 2 ro 22°)

The plot of Figure 6 show the compared performance obtained by each one of
the OpenMP algorithms, in number of primes found per second, when increasing
the number of cores (1 to 4).

OpenMP implementation

7000000
s000000
5000000 /
Jo00000

3000000

Numberaof primes found persecond

2000000

1000000

number of cores

——21Bsse algorithm [OpenMP) =22 Optimization 1 (OpenMP) 2.3 Optimization 2 (OpenMP)

Fig. 5: Evolution of the performance of the OpenMP implementations by chang-
ing the number of processor cores (1 to 4)

4.3.3 MPI results In Table 4 are shown the obtained results for the MPI im-
plementations. Each row represents the values obtained in the respective number
of cores configuration (1 to 16). The values obtained for each one of the MPI
algorithms are shown in table columns Base algorithm, Optimization 1 and
Optimization 2. The values obtained are relative to the range of numbers be-
tween 2 and 225,
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Found Primes

2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690
2063690

N

33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432
33554432

Base algorithm Optimization 1 Optimization 2

22% Cores Time

1 0,888
2 0,793
30,769
4 0,769
5 0,668
6 0,478
70,390
8 0,547
0,280
10 0,310
11 0,241
120,295
130,169
14 0,142
15 0,173
16 0,100

== = e e e e e e e e e e e e
Ne}

primes/sec
2323974
2602382
2683601
2683601
3089355
4317341
5291510
3772740
7370318
6657061
8563025
6995556
12211178
14533021
11928838
20636890

time
0,450
0,359
0,368
0,349
0,308
0,254
0,138
0,107
0,085
0,064
0,100
0,086
0,051
0,115
0,063
0,060

primes/sec time

4585973
5748435
5607848
5913146
6700286
8124756
14954261
19286804
24278682
32245125
20636880
23996372
40464471
17945113
32756952
34394800

0,481
0,442
0,342
0,296
0,217
0,111
0,095
0,067
0,043
0,050
0,034
0,046
0,048
0,027
0,029
0,052

primes/sec

4290412

4668977

6034175

6971919

9510083

18591784
21723032
30801313
47992744
41273760
60696706
44862783
42993500
76432889
71161655
39686308

Table 4: Execution times and average prime numbers found per second for the
MPI implementation. Each row shows the measured values distinct core config-
urations in a 4 computer node configuration

Numberof primes found persecond

90000000

80000000

70000000

50000000

50000000

40000000

30000000

0

MPI implementation

20000000
10000000

number of cores.

——3.1Base algorithm (MPI) =32 Optimization 1 (MPI)

3.3 Optimization

2 (MPI)

Fig. 6: Evolution of the performance of the MPI implementations by changing
the number of processor cores (1 to 16 in 4 distributed nodes)
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The plot of Figure 6 show the compared performance obtained by each one of
the OpenMP algorithms, in number of primes found per second, when increasing
the number of cores (1 to 16).

4.3.4 Single processor vs OpenMP vs MPI in a single node The Fig-
ure 7 plots the performance of all algorithm versions for the range of numbers
between 2 and 22°. The Sequential algorithms use only one core, the OpenMP
use 4 cores in a single computing node and the MPI used 4 cores distributed
among 4 distinct computing nodes (1 core per node).

Single processorvs OpenMP vs MPI

8000000

7000000

T 6000000

& 5000000
3
2
£
£
H
;

5 3000000

—
— \

0

1 2 3 4

number of cores

==11B8ase algorithm (Division) =12 Optimization 1 (Fast marking) =13 Optimization 2 (Blocked]
——21Base algorithm (OpenMP)  ——2.2 Optimization 1 (OpenMP]  ———2.3 Optimization 2 (OpenMP)

3.1Base algorithm (MPI) 3.2 Optimization 1 (MPI) 3.3 Optimization 2 (MPI)

Fig. 7: Evolution of the performance of the three implementations by changing
the number of processor cores (1 to 4 cores)

4.4 Discussion

In the present section will be analyzing the data obtained by the Single processor
results (section 4.3.1), OpenMP results (section 4.3.2) and MPI results (4.3.3).

Starting by analyzing results of the sequential algorithm implementations
described in sections 2.1.1, 2.1.2 and 2.1.3, the Figure 4 shows that the bet-
ter performance was obtained by the second optimization of the algorithm.
The speed up factors plotted in Figure 8 show that the Optimization 1 has
speedup factors from a minimum 65 times to a maximum of 115 times more
faster than the Base algorithm. The best speedup factors where obtained by
the Optimization 2 witch was 218 times faster than the Base algorithm for the
range of values between 2 and 2%°, the minimum speed up factor obtained for
this algorithm was 93 times faster. Analyzing the trends of the graphic curves
(Figure 8a) it can be concluded that continuing to increase the range of values,
the performance degradation of the Base algorithm will be more significant
than for the other two optimizations. By comparing the Optimization 1 and
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Optimization 2 speedup factors in Figure 8b the speedup factor of the blocked
algorithm vary from 1 (equal performance) to 2 times faster when considering
16 blocks. The maximum speedup factor is already reached when using blocks
of data of 2.097.152 bytes (225 x 3/16 divided in 3 blocks of data). This value is
consistent with the size of the processor cache.

times faster
times faster

w
&
°

[ 0

Gl o o o o o o G Gl o ° o \:J o o o o Gl e e o Lo 3 o o Gl Gl o ° °
A AT AT g A o \}\\ .;1.\\ o \»\\ @\" ~ R P N A T T R RO R MR
X225 x 2%
—— 1.2 Optimization 1 [Fast marking) = 1.3 Optimization 2 [Blocked) 1.3 Optimization 2 (Blocked)
(a) Base algorithm (b) Optimization 1

Fig. 8: Speedup factors of: Optimization 1 and Optimization 2 relative to the
Base algorithm (a) and Optimization 2 relative to Optimization 1 (b)

Regarding the OpenMP implementations the Figure 5 shows that the bet-
ter performance was obtained by the Optimization 2 of the algorithm. The
graphic also show that for small core configurations the Optimization 1 has
a comparable performance to the Optimization 2, but for configurations with
higher number of cores both Base algorithm and Optimization 1 shown a
visible degradation (more that 2 cores). The main fact for this is related with
concurrency problems of having several threads disputing the same portion of
data (reading and writing the value of k). Once that in Optimization 2 it was
removed the two omp barriers from the algorithm, the performance of is not
affected by the scaling to a multi-core environment. Speedup factor range from
2.5 times faster for configurations with 1 or 2 cores to more than 10 times in
configurations with 4 cores.

By analyzing Figure 4 it can be concluded that using MPI all of the three
implementations scale well when increasing the number of cores. Optimization
2 shown again the better performance of the three implementations.

Finally by comparing the performance of the 9 algorithms (Figure 7) in con-
figurations up to 4 cores it can be concluded that the performance of OpenMP
Optimization 2, MPI Optimization 1 and MPI Optimization 2 have similar
performance, with OpenMP having better results in lower core count configura-
tions. This fact may be related with the overhead of communication needed by
MPI that cannot outperform the OpenMP in such cases.
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5 Conclusions

This paper introduced the algorithm for seeking a list of prime numbers using
the Sieve of Eratosthenes given an range of numbers from 2 to N. In the first
sections where revealed some weakness of the algorithm regarding the scaling to
higher ranges of numbers.

The parallelization of the algorithm revealed to be a good strategy to scale
the algorithm in multi-core architectures using OpenMP. The use of MPI was
also addressed to be used in a multiple node computing environment. In both
approaches OpenMP and MPI were compared optimizations regarding the elimi-
nation of even integers (all primes are odd except 2) and in the removal of thread
synchronization / broadcast operations by introducing redundant portions of the
code that can be performed by each thread or process.

The algorithms where tested in multiple computing configurations using a
quad-core architecture and 4 computing nodes in the MPI versions. The results
shown that the OpenMP could be a good solution when using multiple core
architecture but programmer should be aware of thread synchronization issues
that may degrade the performance. If the objective is to scale the algorithm to a
multi node architecture the MPI revealed to have good scaling capabilities over
a multi node configuration. Nevertheless the overhead of inter process communi-
cation used by the MPI this solution revealed to have performance to OpenMP
even in a single computing node configuration.

Atkin and Bernstein [1] described an improved version of the sieve of Eratos-
thenes, the parallelization of that algorithm using OpenMP and MPI and the
respective benchmark over the presented implementations could be pointed as
future work.



[1]
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Code Listings
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#define BLOCKLOW(id, p, n) ((id)x*(n)/(p))

/* %

* BLOCK_HIGH

* Returns the index immediately after the

* end of a local array with regards to

* block decomposition of a global array.

*

#+ param (int) process rank

# param (int) total number of processes

# param (int) size of global array

# return (int) offset after end of local array
*/

#define BLOCKHIGH(id, p, n) (BLOCKLOW((id)+1, (p),
/[ * %

* BLOCK_SIZE

* Returns the size of a local array

% with regards to block decomposition

* of a global array.

*

% param (int) process rank

#+ param (int) total number of processes

*+ param (int) size of global array

* return (int) size of local array

*

#define BLOCKSIZE(id, p, n) ((BLOCKHIGH((id), (p),

((id), (p), (n))))

/[ ® %
BLOCK_ OWNER

Returns the rank of the process that
handles a certain local array with

regards to block decomposition of a
global array.

*

*

*

*

*

*

*

% param (int) index in global array

#+ param (int) total number of processes

*+ param (int) size of global array

% return (int) rank of process that handles index
*
d

/
#define BLOCKOWNER(i, p, n) (((p)#*((i)+1)=1)/(n))

(n)))

(n))) — (BLOCKLOW

Code 1.7: C/C++ macros used to distribute data items among a set of processors

using block decomposition

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>

#include <sys/time.h>

#define BLOCKLOW(id ,p,n) ((id)=(n)/(p))
#define BLOCKHIGH(id ,p,n) (BLOCKLOW((id)+1,p,n)—1)
(

#define BLOCK-SIZE(id ,p,n) (BLOCKHIGH(id ,p,n)-BLOCKLOW(id ,p,n)+1)

void usage (void)

std :: cout << ”sieve <max-number>” << std ::endl;

std :: cout << "<max-number> range between 2 and N.” << std::endl;
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18 int main(int argc, char *x argv)

19 {

20 if (argec !'= 2)

21

22 std :: cout << ”Invalid number of arguments!” << std::endl;

23 usage () ;

24 return 0;

25 }

26

27 int range_max = atoi(argv[1l]);

28

29 if (range_max < 2)

30

31 std :: cout << "<max_number> Must be greater than or equal to 2.7
<< std::endl;

32 usage () ;

33 return 0;

34

35

36 // Global k

37 int k = 2;

38

39 // Global count

40 int count = 0;

41

42 int low_value = 2;

43

44 // block of data

45 char * marked = (char x)malloc(range_max);

16

47 if (marked == 0)

48

49 std :: cout << ”Cannot allocated enough memory.” << std::endl;

50 exit (1);

51 }

52

53 for (int i = 0; i < range_max; —++i)

54 {

55 marked[i] = 0;

56 }

57

58 int first_-index = O0;

59 do

60 {

61 if (k > low_value)

62

63 first_.index = k — low_-value + k;

64

65 else if (k * k > low_value)

66 {

67 first_index = k * k — low_value;

68

69 else if (low_value % k = 0)

70 {

71 first_index = 0;

72 }

73 else

74 {

75 first_index = k — (low_value % k);

76 }

77

78 for (int i = first_index; i < range.max; i++)

79 {

80 if (i % k = 0)

81 marked [i] = 1;

82 }

83

84 while (marked[++k]) ;
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33
34
35
36
37
38
39
40
41
42
43
44

} while (k * k <= range_max);

for (int i = 0; i < range_-max; —++i)

if (marked[i] == 0)
{
++count ;

}

free (marked); marked = 0;

std :: cout << count << ” primes found between 2 and

std :: endl;

return O0;

»
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<< range_max <<

Code 1.8: Single process Sieve of Eratosthenes with division checking

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>

#include <sys/time.h>

#define BLOCKLOW(id ,p,n)
#define BLOCKHIGH(id ,p,n)
#define BLOCK_SIZE(id ,p,n)

void usage(void)

{

}
int

{

std::cout << ”sieve <max_-number>" << std::
std :: cout << "<max_number> range between 2 and N.” << std::

main (int argc, char %% argv)

((id)*(n)/(p))
(BLOCKLOW ((id)+1,p,n)—1)
(BLOCK_HIGH (id , p,n)-BLOCKLOW (id ,p,n)+1)

std :: cout << ”Invalid number of arguments!” << std::endl

if (arge !'= 2)
usage ()
return 0;
}
int range_max = atoi(argv[1l]);

if (range_-max < 2)

std:: cout << ”<max_number> Must be greater

<< std::endl;
usage () ;
return 0;

// Global k
int k = 2;

// Global index
int prime_-index = O0;

// Global count
int count = 0;

than or equal

endl;

to 2.7
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45 int low_value = 2;

16

a7 // block of data

48 char * marked = (char x)malloc(range_-max);

49

50 if (marked == 0)

51 {

52 std :: cout << ”Cannot allocated enough memory.” << std::endl;

53 exit (1);

54

55

56 for (int i = 0; i < range-max; —++i)

57 {

58 marked[i] = 0;

59 }

60

61 int first_index = 0;

62 do

63

64 if (k > low_value)

65

66 first_.index = k — low_value + k;

67 }

68 else if (k * k > low_value)

69 {

70 first_index = k * k — low_value;

71 }

72 else if (low_value % k == 0)

73 {

74 first_index = 0;

75 }

76 else

77 {

78 first_index = k — (low_value % k);

79 }

80

81 for (int i = first_index; i < range.max; i += k)

82

83 marked[i] = 1;

84 }

85

86 while (marked[++prime_index]) ;

87 k = prime_index + 2;

88

89 } while (k x k <= range_max);

90

91 for (int i = 0; i < range_max; —++i)

92

93 if (marked[i] == 0)

94 {

95 “++count ;

96 }

97 }

98

99 free (marked); marked = 0;

100

101 std::cout << count << ” primes found between 2 and ” << range_max <<
std :: endl;

102

103 return O;

104 }

Code 1.9: Single process Sieve of Eratosthenes with fast marking

1 #include <iostream>
2 #include <cmath>
3 #include <cstdio>
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4 #include <cstdlib>

#include <sys/time.h>

#define BLOCKLOW(id ,p,n) ((id)=(n)/(p))
#define BLOCKHIGH(id ,p,n) (BLOCKLOW((id)+1,p,n)—1)

10 #define BLOCKSIZE(id ,p,n) (BLOCKHIGH(id ,p,n)-BLOCKLOW(id ,p,n)+1)

12 void usage(void)

13 {

17 }

19 int
20 {
21

22

23

24

25

26

27

28

29

30

31

32

33

34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

64

std ::cout << 7”sieve <max_number> <block_count>" << std ::endl;

std :: cout << "<max_number> range between 2 and N.” << std::endl;

std :: cout << "<block_count> is the number of blocks to use.” << std
::endl;

main (int argc, char %% argv)
if (arge != 3)
std :: cout << ”Invalid number of arguments!” << std::endl;

usage () ;
return 0;

}
int range_max = atoi(argv[1l]);
int num_blocks = atoi(argv[2]);

if (range_-max < 2)

std :: cout << "<max-number> Must be greater than or equal to 2.7
<< std::endl;

usage () ;

return 0;

}

if (num_blocks < 1)

{
std :: cout << "<block_count> between 1 and <max_number>" << std::
endl;
usage ()
return 0;
}
int temp = (range_max — 1) / num_blocks;

if ((1 4+ temp) < (int)sqrt((double)range_max))

std:: cout << ”"Too many blocks!” << std::endl;

std :: cout << ”"Block size should be greater equal than sqrt(n).”
<< std::endl;

exit (1);

// Global count
int count = 0;

int thread_id = 0;
for (thread-id = 0; thread_-id < num_blocks; ++thread_id)

{

int k = 2;
int prime_index = O0;

int low_value = 2 4+ BLOCKLOW(thread_id , num_blocks, range_max —
1)

int block_size = BLOCK.SIZE(thread-id , num_blocks, range_-max —
1)
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66 char * marked = (char x)malloc(block_size);

67

68 if (marked == 0)

69 {

70 std :: cout << "Thread ” << thread_id << ” cannot allocated

enough memory.” << std::endl;

71 exit (1);

72 }

73

74 for (int i = 0; i < block_size; 4++i) marked[i] = 0;
75

76 int first_index = 0;

77 do

78

79 if (k > low_value)

80

81 first_index = k — low_value + k;

82

83 else if (k * k > low_value)

84

85 first_index = k * k — low_value;

86 }

87 else

88 {

89 if (low_value % k == 0) first_index = 0;
90 else first_index = k — (low_value % k);
91 }

92

93 for (int i = first_index; i < block_size; i += k)
94 {

95 marked[i] = 1;

96 }

o7

98 while (marked[++prime_index]) ;

99 k = prime_index + 2;
100
101 } while (k % k <= range_max);
102
103 int local_count = O0;
104 for (int i = 0; i < block.size; ++i)
105 {
106 if (marked[i] == 0)
107
108 ++local_count;
109 }
110 }
111
112 free (marked); marked = 0;
113
114 count += local_count;
115 }
116
117 std :: cout << count << ” primes found between 2 and ” << range_max <<

std :: endl;
118
119 return O;
120 }
Code 1.10: Single process Blocked Sieve of Eratosthenes with fast marking

1 #include <omp.h>

2 #include <iostream>

3 #include <cmath>

4 #include <cstdio>

<cstdlib>

5 #include
6

7 #include

<sys/time.h>
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8

9 #define BLOCKLOW(id ,p,n) ((id)=*(n)/(p))

10 #define BLOCKHIGH(id ,p,n) (BLOCKLOW((id)+1,p,n)—1)

11 #define BLOCK.SIZE(id ,p,n) (BLOCKHIGH(id ,p,n)-BLOCKLOW(id ,p,n)+1)

12

13 void usage(void)

14 {

15

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

std::cout << ”sieve <max_number> <thread count>” << std::endl;

std :: cout << "<max-number> range between 2 and N.” << std::endl;

std :: cout << "<thread count> is the number of threads to use.” <<
std :: endl;

main(int argc, char **x argv)
if (argc !'= 3)

std :: cout << ”Invalid number of arguments!” << std::endl;

usage () ;
return 0;

}

int range_max = atoi(argv[1l]);
int num_threads = atoi(argv[2]);

if (range_max < 2)

std :: cout << "<max_number> Must be greater than or equal to 2.7
<< std::endl;

usage () ;

return 0;

}

if (num_threads < 1)

std :: cout << "<thread count> between 1 and <max_number> 7 << std
::endl;

usage () ;

return 0;

}

if (num_threads > omp_get_-max_threads())

{

num_threads = omp-_get_-max_threads();
}
int temp = (range-max — 1) / num-_threads;

if ((1 4+ temp) < (int)sqrt((double)range_max))

std :: cout << ”Too many threads!” << std::endl;
std :: cout << ”Thread should be greater equal than sqrt(n).” <<

std :: endl;
exit (1);
}
// Global k
int k = 2;
int prime_-index = O0;

// Global count
int count = 0;

int thread_-id = 0;

omp_set_num_threads (num_threads) ;

#pragma omp parallel for default(shared) private(thread-id)
for (thread_-id = 0; thread_-id < num_threads; ++thread_id)

{
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int low_value = 2 4+ BLOCKLOW(thread_id , num_threads,

- 1);

int block_size = BLOCK.SIZE(thread_-id , num_threads, range_-max —
1)

char * marked = (char x)malloc(block_size);

if (marked == 0)

{

std :: cout << ”"Thread ” << thread_.id << ” cannot allocated

enough memory.” << std::endl;
exit (1);
for (int i = 0; i < block_size; ++i) marked[i] = O0;

int first_index = 0;
do

if (k > low_value)
first_index = k — low_-value + k;

else if (k * k > low_value)

{
first_.index = k * k — low_value;
}
else
{
if (low_value % k == 0) first_index = 0;
else first_index = k — (low_value % k);
}

for (int i = first_index; i < block._size; i += k)

marked [i] = 1;

}

#pragma omp barrier

if (thread_.id == 0)
while (marked[++prime_index]) ;
k = prime_index + 2;

}

#pragma omp barrier
} while (k % k <= range_max);

int local_count = 0;
for (int i = 0; i < block_size; ++i)

if (marked[i] == 0)
++local_count;
}
free (marked); marked = 0;
#pragma omp atomic

count += local_count;

}

std :: cout << count << ” primes found between 2 and ” << range_max <<

std :: endl;

return O;
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Code 1.11: OpenMP Sieve of Eratosthenes

= e
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#include <omp.h>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>

#include <sys/time.h>
#define BLOCKLOW(id ,p,n) ((id)=(n)/(p))

#define BLOCKHIGH(id ,p,n) (BLOCKLOW ((id)+1,p,n)—1)
#define BLOCKSIZE(id ,p,n) (BLOCKHIGH(id ,p,n)—BLOCKLOW(id ,p,n)+1)

13 void usage(void)

14 {

18 }

20 int
21 {
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53

std :: cout << ”sieve <range> <thread count>” << std::endl;

std :: cout << "<max-number> range between 2 and N.” << std::endl;

std::cout << ”<thread count> is the number of threads to use.” <<
std :: endl;

main(int argc, char xx argv)
TimeUtils :: ScopedTimer t;
if (arge != 3)

std::cout << ”Invalid number of arguments!” << std::endl;

usage () ;
return 0;

}

int range_max = atoi(argv[1l]);
int num_threads = atoi(argv[2]);

if (range_max < 2)

std :: cout << "<max_number> Must be greater than or equal to 2.7
<< std::endl;

usage () ;

return 0;

}

if (num_threads < 1)

{

std :: cout << "<thread count> between 1 and <max_number> 7 << std
::endl;

usage () ;

return 0;

}

if (num_threads > omp_get_max_threads())

num_threads = omp-_get_-max_threads();
}
int temp = (range_max — 1) / num_threads;
if ((1 4+ temp) < (int)sqrt((double)range_max))

{

std :: cout << ”Too many threads!” << std::endl;

std :: cout << ”Thread should be greater equal than sqrt(n).” <<
std :: endl;

exit (1);
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int k = 3;
int prime_index = 0;
int count = 1;

int thread_-id = 0;
omp-set_-num_threads (num_threads) ;
#pragma omp parallel for default(shared) private(thread_id)

for

{

(thread_id = 0; thread.id < num_threads; ++thread_id)

int low_value = 2 4+ BLOCKLOW(thread_id , num-_threads, range_max

- 1);
int high_value = 2 4+ BLOCKHIGH(thread_-id , num-_threads,
range_max — 1);

int block_size = BLOCK.SIZE(thread_-id , num_threads, range_max —
1);

if (low_value % 2 == 0)
if (high_value % 2 == 0)
block_size = (int)floor ((double)block_size / 2.0);
high_value ——;
}
else

block_size = block_size / 2;

low_value++;

}

else

{
if (high_value % 2 = 0)

block_size = block_size / 2;
high_value ——;

}
else
block_size = (int)ceil ((double)block_size / 2.0);
}
char * marked = (char x)malloc(block_size);
if (marked == 0)
std::cout << ”"Thread ” << thread_id << ” cannot allocated
enough memory.” << std::endl;
exit (1);
}

for (int i = 0; i < block_.size; ++i) marked[i] = 0;

int first_index = 0;
do
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{
if (k >= low_value)
first_index = ((k — low_value) / 2) + k;
else if (k * k > low_value)
{
first_index = (k * k — low_value) / 2;
}
else
{
if (low_value % k == 0)
{
first_index = 0;
}
else
{
first_index = 1;
while ((low_value + (2 = first_index)) % k != 0)
++first_index ;
¥
}
for (int i = first_index; i < block_size; i 4+= (k))
marked[i] = 1;
#pragma omp barrier
if (thread_.id == 0)
while (marked[++prime_index]) ;
k = (3 4+ (prime_index * 2));
}
#pragma omp barrier
} while (k * k <= range_max);
int local_count = 0;
for (int i = 0; i < block_size; ++i)
if (marked[i] == 0)
{
++local_count ;
}
free (marked); marked = 0;
#pragma omp atomic
count += local_count;
}
std::cout << count << ” primes found between 2 and ” << range_max <<
std :: endl;
return O;
}

Code 1.12: OpenMP Sieve of Eratosthenes with all even numbers elimination
from the lists/computation

#include <omp.h>



30

2 #include <iostream>

3 #include <vector>

4 #include <cmath>

5 #include <cstdio>

6 #include <cstdlib>

7

8 #include <sys/time.h>

9

10 #define BLOCKLOW(id ,p,n) ((id)=*(n)/(p))

11 #define BLOCKHIGH(id ,p,n) (BLOCKLOW((id)+1,p,n)—1)

12 #define BLOCK.SIZE(id,p,n) (BLOCKHIGH(id ,p,n)—BLOCKLOW(id ,p,n)-+1)

13

14 void usage(void)

15 {

16 std :: cout << "sieve <range> <thread count>” << std::endl;

17 std :: cout << "<max-number> range between 2 and N.” << std::endl;

18 std :: cout << "<thread count> is the number of threads to use.” <<

std :: endl;

19 }

20

21 int main(int argc, char *x argv)

22 {

23 TimeUtils :: ScopedTimer t;

24

25 if (arge != 3)

26

27 std::cout << ”Invalid number of arguments!” << std::endl;

28 usage () ;

29 return 0;

30 }

31

32 int range_max = atoi(argv[1l]);

33 int num_threads = atoi(argv[2]);

34

35 if (range_max < 2)

36

37 std :: cout << ”<max_number> Must be greater than or equal to 2.”
<< std::endl;

38

39 usage () ;

40 return 0;

41 }

42

43 if (num_threads < 1)

44

45 std::cout << ”<thread count> between 1 and <max_number> 7 << std
::endl;

46

a7 usage () ;

48 return 0;

49 }

50

51 if (num_threads > omp_get_-max_threads())

52 {

53 num_threads = omp_get_max_threads();

54 }

55

56 int temp = (range-max — 1) / num_threads;

57 if ((1 + temp) < (int)sqrt((double)range_max))

58

59 std :: cout << ”Too many threads requested!” << std::endl;

60 std :: cout << ”The first thread must have a block size >= sqrt(n)
.7 << std::endl;

61 exit (1);

62

63

64 int k = 3;
65
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int count = 1;

int sqrtn = ceil(sqrt ((double)range_max));

char * pre_marked = (char *)malloc(sqrtn + 1);

pre_marked [0] = 1;
pre_marked [1] = 1;
for (int i = 2; i <= sqrtn; 4++i) pre_marked[i] = O0;

int pre_k = 2;
do

int base = pre_k *x pre_k;
for (int i = base; i <= sqrtn;
while (pre-marked[++pre_k]);

} while (pre_k * pre_k <= sqrtn);

std :: vector<int> kset;
for (int i = 3; i <= sqrtn; ++i)

if (pre_marked[i] == 0)
kset.push_back(i);
}

free (pre_marked) ;

if (kset.empty())

{
std :: cout << ”There is 1 prime
rendl;
exit (0);

int thread_-id = 0;
int kindex = 0;
omp_set_-num_threads (num_threads) ;

#pragma omp parallel for default(shared)
k
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i += pre_k) pre_marked[i] = 1;

less than or equal

to 2.7 << std

private (thread-id , kindex,

for (thread_.id = 0; thread_-id < num_threads; ++thread_id)

{
kindex = 0;
k = kset [kindex];

int low_value = 2 + BLOCKLOW(thread_id ,

- 1);

num_threads, range_max

int high_value = 2 4+ BLOCKHIGH(thread-id , num_threads,

int block_size = BLOCK.SIZE(thread_-id, num_threads

)

range_-max —

block_size = (int)floor ((double)block_size / 2.0);

range_max — 1);
1);
if (low_value % 2 == 0)
if (high_value % 2 = 0)
high_value ——;
}
else

block_size = block_size / 2;

low_value++;

}

else

if (high_value % 2 = 0)
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129 block_size = block_size / 2;
130 high_value ——;

131 }

132 else

134 block_size = (int)ceil ((double)block_size / 2.0);
136 }

138 char * marked = (char x)malloc(block_size);

140 if (marked == 0)

142 std :: cout << ”"Thread ” << thread_.id << ” cannot allocated
enough memory.” << std::endl;

145 exit (1);
146 }

148 for (int i = 0; i < block_size; ++i) marked[i] = 0;

150 int first_index = 0;
151 do

153 if (k >= low_value)
154 {
155 first_index = ((k — low_value) / 2) + k;

157 else if (k * k > low_value)

159 first_index = (k * k — low_value) / 2;
160 }

161 else

162 {

163 if (low_value % k == 0)

164 {

165 first_index = 0;

166 }

167 else

168 {

169 first_index = 1;

170 while ((low_value + (2 % first_index)) % k != 0)
171 ++first_index;

175 for (int i = first_index; i < block_size; i += (k))
177 marked[i] = 1;

180 k = kset[++kindex];

181 } while (k % k <= range_max && kindex < (int)kset.size());

183 int local_count = 0;
184 for (int i = 0; i < block_size; ++i)

186 if (marked[i] == 0)
188 { ++local_count ;
190 }

192 free (marked); marked = 0;

194 #pragma omp atomic
195 count 4+= local_count;
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}

std :: cout << count << ” primes found between 2 and
std :: endl;

9

<< range_max <<

return O;

Code 1.13: OpenMP Sieve of Eratosthenes with each thread maintaining the
seed list

#include <mpi.h>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>

#define BLOCKLOW(id ,p,n) ((id)=(n)/(p)

)
#define BLOCK HIGH(id ,p,n)  (BLOCKLOW((
#define BLOCK_SIZE(id ,p,n) ( (BLOCKLOW (

(id)+1),p,n)—1)
19 ((id)+1),p,n)) —(BLOCKLOW(id ,p,

void usage (void)

{

int

std :: cout << ”sieve <max-number>” << std ::endl;

std :: cout << ”<max_number> range between 2 and N.” << std::endl;
main (int argc, char =xargv|[])

double elapsed_-time;

MPI_Init (&argec, &argv);

MPI_Barrier (MPLCOMM-WORLD) ;
elapsed_time = —MPI_-Wtime () ;

int process_id;
MPI_Comm_rank (MPLCOMM WORLD, &process_id);

int num_processes;
MPI_Comm._size (MPLCOMM.WORLD, &num_processes);

if (argec !'= 2)
if (process_-id = 0)
usage () ;
MPI_Finalize () ;
exit (1);
}
int range_max = atoi(argv[1l]);

int low_value = 2 + BLOCKLOW(process_id ,num_processes ,range_max—1);
int block_size = BLOCK.SSIZE(process_-id ,num_processes ,range-max—1);

int temp = (range_max — 1) / num_processes;
if ((2 4+ temp) < (int) sqrt((double) range_max))
if (process_id == 0)
std :: cout << ”"Too many processed!” << std::endl;

std :: cout << "Process should be greater equal than sqrt(m).”
<< std::endl;
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}
MPI_Finalize () ;
exit (1);
char x marked = (char x)malloc(block_size);
if (marked == NULL)
{
std :: cout << "Process 7 << process_id << ” cannot allocated
enough memory.” << std::endl;
MPI_Finalize () ;
exit (1);
}
for (int i = 0; i < block_size; i++)
{
marked[i] = 0;
}
int first_index;
if (process_.id == 0)
first_index = 0;
}
int k = 2;
int prime_-index = 0;
int count = 0;
do
{
if (k * k > low_value)
{
first_index = k * k — low_value;
else
{
if (low_value % k == 0) first_index = 0;
else first_index = k — (low_value % k);

for (int i = first_-index; i < block_size; i 4+= k)

marked[i] = 1;

}

if (process_-id = 0)
while (marked[++prime_index]) ;
k = prime_index + 2;

}

MPI_Bcast (&k, 1, MPIIINT, 0, MPLCOMMWORLD) ;
} while (k * k <= range_max);

int local_count = 0;
for (int i = 0; i < block_size; ++i)

if (marked[i] == 0)
{

++local_count;
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}
free (marked); marked = 0;
MPI_Reduce (&local_count , &count, 1, MPI.INT, MPISUM, O,
MPLCOMM_WORLD) ;
elapsed_time += MPI_-Wtime () ;
if (process_id == 0)
std :: cout << count << ” primes found between 2 and 7 <<
range-max << std::endl;
char st[100];
sprintf(st, "Time: %3.3f seconds\n”, elapsed_time);
std :: cout << st
¥
MPI_Finalize ();
return O;
}
Code 1.14: MPI Sieve of Eratosthenes
#include <mpi.h>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#define BLOCKLOW(id ,p,n) ((id)x*(n)/(p))
#define BLOCKHIGH(id ,p,n)  (BLOCKLOW(((id)+1),p,n)—1)
#define BLOCKSIZE(id ,p,n)  ((BLOCKLOW (((id)+1),p,n))—(BLOCKLOW(id ,p,
n)))
void usage (void)
{
std :: cout << ”sieve <max-number>” << std ::endl;
std :: cout << ”<max_number> range between 2 and N.” << std::endl;
}
int main (int argc, char =xargv|[])
{

double elapsed_-time;
MPI_Init (&argec, &argv);

MPI_Barrier (MPLCOMM.WORLD) ;
elapsed_time = —MPI_-Wtime () ;

int process_id;
MPI_Comm_rank (MPLCOMM WORLD, &process_id);

int num-_processes;
MPI_Comm._size (MPLCOMM.WORLD, &num_processes) ;

if (argec !'= 2)
if (process_.id == 0)
usage () ;
MPI_Finalize () ;
exit (1);
}
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42 int range_max = atoi(argv[1l]);

43

44

45 int low_value = 2 + BLOCKLOW(process-id ,num_processes, range_-max —
1)

46 int high_value = 2 + BLOCKHIGH( process_id ,num_processes, range_max
- 1);

47 int block.size = BLOCK.SIZE(process_-id ,num_processes, range.max — 1)

48

49 if (low_value % 2 == 0)

50 {

51 if (high_value % 2 == 0)

52

53 block_size = (int)floor ((double)block_size / 2.0);

54 high_value ——;

55 }

56 else

57

58 block_size = block_size / 2;

59 }

60

61 low_value++;

62 }

63 else

64 {

65 if (high_value % 2 == 0)

66

67 block_size = block_size / 2;

68 high_value ——;

69 }

70 else

71

72 block_size = (int)ceil ((double)block_size / 2.0);

73 }

74 }

75

76 int temp = (range_max — 1) / num_processes;

77

78 if ((2 + temp) < (int) sqrt((double) range_max))

79

80 if (process_.id == 0)

81

82 std :: cout << "Too many processed!” << std::endl;

83 std :: cout << ”"Process should be greater equal than sqrt(mn).”

<< std::endl;

84 }

85

86 MPI_Finalize () ;

87 exit (1);

88 }

89

90 char x marked = (char x)malloc(block_size);

91 if (marked == NULL)

92

93 std :: cout << ”Process 7 << process_-id << ” cannot allocated

enough memory.” << std::endl;

94

95 MPI_Finalize () ;

96 exit (1);

97 }

98

99 for (int i = 0; i < block_size; i++)

100 {

101 marked [i] = 0;

102 }

103

104 int first_index;



105 if (process_id == 0)

107 first_index = 0;

110 int k = 3;
112 int prime_-index = 0;

114 int count = 1;

118 if (k >= low_value)

119 {

120 first_index = ((k — low_value) / 2) + k;
121 }

122 else if (k * k > low_value)

123 {

124 first_-index = (k * k — low_value) / 2;
125 }

126 else

128 if (low_value % k == 0)
129 {

130 first_index = 0;
131 }

132 else

133 {

135 first_index = 1;
136 while ((low_value 4+ (2 * first_index)) % k != 0)
137 ++first_index;

139 }
141 for (int i = first_index; i < block_size; i += (k))

143 marked[i] = 1;
144 }

146 if (process_.id == 0)

148 while (marked[++prime_index]) ;
149 k = (3 + (prime_index * 2));
150 }

152 MPI_Bcast (&k, 1, MPIIINT, 0, MPLCOMMWORLD) ;
153
154 } while (k * k <= range_max);

156 int local_count = 0;

157 for (int i = 0; i < block_size; ++i)
158 {

159 if (marked[i] == 0)

161 ++local_count ;
163 }
165 free (marked); marked = 0;

167 MPI_Reduce (&local_count , &count, 1, MPIINT, MPISUM, O,
MPLCOMM.-WORLD) ;

168

169 elapsed_time += MPI_-Wtime () ;

170

171 if (process_id == 0)
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172 {

173 std :: cout << count << ” primes found between 2 and 7 <<
range.max << std::endl;

174

175 char st[100];

176 sprintf(st, "Time: %3.3f seconds\n”, elapsed_time);

177 std :: cout << st

178 }

179

180 MPI_Finalize ();

181 return O;

182 }

Code 1.15: MPI Sieve of Eratosthenes with all even numbers elimination from
the lists/computation

1 #include <mpi.h>

2 #include <iostream>
3 #include <vector>

4 #include <cmath>

5 #include <cstdio>

6 #include <cstdlib>

7

8 #define BLOCKLOW(id ,p,n) ((id)=*(n)/(p))

9 #define BLOCKHIGH(id ,p,n) (BLOCKLOW (((id)+1),p,n)—1)

10 #define BLOCKSIZE(id ,p,n)  ((BLOCKLOW (((id)+1),p,n))=(BLOCKLOW(id ,p,
n)))

11

12 void usage(void)

13 {

14 std :: cout << "sieve <max_number>" << std::endl;

15 std :: cout << "<max-number> range between 2 and N.” << std::endl;

16 }

17

18 int main (int argc, char xargv|[])

19 {

20 double elapsed_time;

21

22 MPI_Init (&argc, &argv);

23

24 MPI_Barrier (MPLCOMM.-WORLD) ;

25 elapsed_time = —MPI_Wtime() ;

26

27 int process_-id;

28 MPI_.-Comm_rank (MPLCOMM-WORLD, &process-id);

29

30 int num_processes;

31 MPI_Comm_size (MPLCOMM.WORLD, &num_processes) ;

32

33 if (arge !'= 2)

34

35 if (process_id = 0)

36

37 usage () ;

38 MPI_Finalize () ;

39 exit (1);

40

41 }

42

43 int range_max = atoi(argv[1l]);

44

45 int sqrtn = ceil(sqrt ((double)range_max));

16

47 char % pre_marked = (char *x)malloc(sqrtn + 1);

48 pre_marked [0] = 1

3
)

49 pre_marked [1] = 1
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for (int i = 2; i <= sqrtn; ++i) pre.marked[i] = 0;
int pre_k = 2;

do

{

int base = pre_k x pre_k;
for (int i = base; i <= sqrtn; i += pre_k) pre_marked[i] = 1;
while (pre_-marked[++pre_k]);

} while (pre-k * pre_k <= sqrtn);

std :: vector<int> kset;
for (int i = 3; i <= sqrtn; ++i)
{
if (pre_marked[i] == 0)
kset .push_back (i)}

}

free (pre_marked) ;
if (kset.empty())

std :: cout << ”There is 1 prime less than or equal to 2.7 << std

::endl;
exit (0);
}
int low_value = 2 + BLOCKLOW(process_-id ,num_processes, range_-max —
1);
int high_value = 2 + BLOCKHIGH( process_id ,num_processes, range_max
- 1);
int block.size = BLOCKSSIZE(process_id ,num_processes, range.max — 1)
if (low_value % 2 == 0)
if (high_value % 2 == 0)

block_size = (int)floor ((double)block_size / 2.0);
high_value ——;

else

block_size = block_size / 2;

}

low_value++;

}

else
{

if (high_value % 2 == 0)

block-size = block_.size / 2;
high_value ——;

}
else
block_size = (int)ceil ((double)block_size / 2.0);
}
int temp = (range_max — 1) / num_processes;
if ((2 4+ temp) < (int) sqrt((double) range_-max))
if (process_id == 0)

std :: cout << "Too many processed!” << std::endl;
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std :: cout << "Process should be greater equal than sqrt(
<< std::endl;

}

MPI_Finalize () ;

exit (1);
}
char * marked = (char x)malloc(block_size);
if (marked == NULL)

{

std :: cout << "Process ” << process_id << ” cannot allocated
enough memory.” << std::endl;

MPI_Finalize () ;
exit (1);
for (int i = 0; i < block_size; i++)

marked[i] = 0;

}

int first_index;

if (process_id == 0)
first_index = 0;

}

int kindex = 0;

int k = kset[kindex];

int count = 1;
do
{
if (k >= low_value)
{
first_index = ((k — low_value) / 2) + k;
}
else if (k * k > low_value)
{
first_-index = (k * k — low_value) / 2;
}
else
{
if (low_value % k == 0)
first_index = 0;
}
else
{
first_index = 1;
while ((low_value 4+ (2 x first_index)) % k != 0)
++first_index;
}
}

for (int i = first_index; i < block_size; i += (k))
marked[i] = 1;
k = kset[++kindex];
} while (k % k <= range_-max && kindex < (int)kset.size());

int local_count = 0;

n)_w
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}
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for (int i = 0; i < block_size; 4+i)
{

if (marked[i] == 0)

{

++local_count ;

}

free (marked); marked = 0;

MPI_Reduce (&local_count , &count, 1, MPIINT, MPISUM, O,
MPLCOMM_-WORLD) ;

elapsed_time += MPI_Wtime () ;
if (process_id == 0)

std :: cout << count << 7 primes found between 2 and 7 <<
range_max << std::endl;

char st[100];
sprintf(st, "Time: %3.3f seconds\n”, elapsed_time);
std :: cout << st

}

MPI_Finalize ();
return O0;

Code 1.16: MPI Sieve of Eratosthenes with each thread maintaining the seed list
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